Preliminary communication

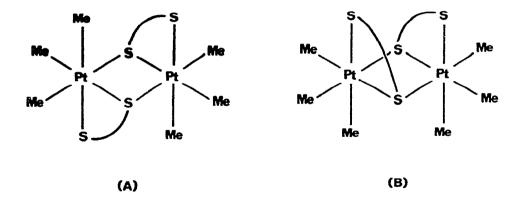
Complexes of trimethylplatinum(IV) with dithiocarbamates, xanthates and cis-maleonitriledithiolate

B W. Brown, K. Kite, A J. Nettle and A. F. Psaila Department of Chemistry, University of Exeter, Excter EX4 4QD

(Received July 23rd, 1977)

SUMMARY

The dithiocarbamate complexes $[Me_3Pt(S_2CNR_2)]_2$, $R_2 = Me_2$, Et_2 , $(CH_2)_4$, are stereochemically rigid in solution, in contrast to the xanthates $[Me_3Pt(S_2COR)]_2$, R = Me, Et, ¹Pr, Bz, which are non-rigid above -40 °C. Sulphur-bridged dimers are postulated Both types of complex give monomeric 1-1 pyridine adducts containing the bidentate dithioacia ligand The xanthate ligands are monodentate in $[Me_2Pt(S_2C-OR)bipy]$, R = Me, CH_2CF_3 , C_6H_{11} . The complex $(Ph_4As)_2[\{Me_3PtS_2C_2(CN)_2\}_2]$ contains a dimeric anion.


The dimeric β -diketone ind β -ketoester complexes of trimethylplatinum(IV) showed a marked difference in stereochemical rigidity in solution [1]. We now report a similar difference between complexes of dithioacid ligands. The dithiocarbamate complexes I; $R_2 = Me_2$, Et_2 , $(CH_2)_4$, are dimeric in the vapour phase (mass spectrum) and in benzene solution (osmometer, 37 °C). The NMR spectra of I in both CDCl₃ and C_6D_6 solutions at 30 °C show three methyl-platinum resonances, with $^2J(^{195}\text{pt}-^1\text{H})$ near 76, 70 and 73 Hz from low to high field respectively A single symmetrically bridged dimer is indicated (Figure 1, A or B) [2], with bridging via the sulphur atoms as in other dimeric dithiocarbamates [3]. The isomers have three non-equivalent methyl groups attached to each metal atom. For complexes with R = Me and Et, two ligand methyl resonances of equal intensity are seen. As the two NR₂ groups in either dimer are related by a centre of symmetry (A) or a two-fold axis (B), the non-equivalence of the R groups reflects a rigid conformation about the S₂C-N bond.

The xanthate complexes II are low melting, yellow or orange solids. Like I they are dimers in solution (osmometrically in toluene, 37 $^{\circ}$ C). The NMR spectra of II in CDCl₃ at 30 $^{\circ}$ C, however, have only broad resonances in the methyl-platinum region, indicating an exchange process among the trans ligands [2]. On cooling the solution, the spectrum sharpens and at -40 $^{\circ}$ C three resonances of equal intensity are seen. The signal at lowest field has $^{2}J \sim 76$ Hz, while the higher field absorptions have almost identical coupling constants in the range 73.0-74.4 Hz As with I, only one dimer species is present.

Both I and II form monomeric pyridine adducts $[Me_3Pt(S_2CNR_2)py]$ and $[Me_3Pt(S_2COR)py]$ They have the e-pected 2-1 pattern of meth;1platinum resonances in solution at 30 °C, with ²J 70.9-72.2 Hz (trans to pyridine), 69.4-71.8 Hz (trans to bidentate dithiocarbamate) and 70.9-72.2 Hz (trans to bidentate xanthate). The ¹H NMR spectra of the 2,2'-bipyridyl complexes $[Me_3Pt(S_2COR)bipy]$, R = Me, CH_2CF_3 , C_6H_{11} , at 30 °C in $CDCl_3$ also show two methyl-platinum resonances, ratio 2:1. They are assignable to methyls trans to bidentate bipyridyl [4] (δ 1.20-1.24; ²J 69.6-70.2 Hz) and to monodentate xanthate (δ 0.28-0.36; ²J 66.4-66.6 Hz) respectively. Attempts to make a bipyridyl adduct of I, R = Me were unsuccessful.

Addition of an aqueous solution of Ph_4ASC1 to the deep-red solution formed by mixing $(Me_3Pt)_2SO_4$ $4H_2O$ and $Na_2S_2C_2(CN)_2$ [5] in aqueous ethanol precipitates an orange-red solid which analyses for $(Ph_4As)_2[\{Me_3PtS_2C_2-(CN)_2\}_2]$. Conductivity measurements in acetone confirm this formulation, and the ¹H NMR spectrum of the complex in this solvent at 30 °C has three methyl-platinum resonances, ratio 1:1:1, with ²J 66.6, 74.0 and 68.2 Hz, consistent with a dimeric anion formed by strong metal-sulphur bridge

C2

bonds. The complex was recovered unchanged after refluxing in pyridine. Two possible structures for the dimeric dithioacid complexes of trimethylplatinum(IV) $[Me_3Pt(S_2CNR_2)]_2$ (I[.] (a) R = Me, (b) R = Et, (c) R_2 = $(CH_2)_4$ and $[Me_3Pt(S_2COR)]_2$ (II, R = Me, Et, ⁱPr, Bz)

It is notable that these ligands, like the thio-6-diketonates [2] and thiourea [6,7] do not reduce the trimethylplatinum(IV) group.

REFERENCES

- 1. K. Kite and A. F. Psaila, J. Organometal. Chem , 97 (1975) C33.
- 2. J. R. Hall and G A. Swile, J. Organometal. Chem , 47 (1973) 195.
- 3. D. Coucouvanis, Prog Inorg. C.en., 11, (1970) 233
- D. E. Clegg, J. R. Hall and G. A. Swile, J. Organometal. Chem., 38 (1972) 403.
- 5. A. Davison and R. H Holm, Inorg. Synth , 10 (1967) 8
- 6. V. A Golovnya and O M Ivanova, Zhur. Neorg. Khim, 3 (1958) 1347.
- 7. K. Kite and A J. Nettle, Unpublished observations.